تدریس خصوصی ریاضی و مقالات ریاضی
تثلیث زاویه


تثلیث زاویه از مسائل قدیمی و حل ناشده ریاضی است.

بزرگان ریاضی در طی دوران براحتی می‌توانستند با کشیدن نیمساز، هر زاویه دلخواه را به دو بخش برابر قسمت کنند، ولی در سه قسمت کردن کمان عاجز بودند. بنابراین تثلیث یا سه بخش کردن زاویه یکی از مسائل عهد باستان گردید.

با آشنایی در حد مثلثات دبیرستانی می‌شود ثابت کرد این مسئله ‌که جزء مسئله‌های طرح شده در شاخه س ۳ ساده می‌توانیم دریابیم که بی‌نهایت زاویه وجود دارد که با کمک ستاره و پرگار قابل تثلیث است، از جمله زاویه‌های ۹۰ درجه یا ۴۵ درجه؛ و بی‌نهایت زاویه وجود دارد که با کمک ستاره و پرگار قابل تثلیث نیست، از جمله زاویهٔ ۶۰ درجه. بنابراین، زاویهٔ ۶۰ درجه را نمی‌توان، به کمک پرگار و خط‌کش، به سه بخش برابر تقسیم کرد.

تثلیث زاویه، به همراه تربیع دایره، تضعیف مکعب و چندضلعیهای اختمان‌های هندسی است با کمک پرگار و ستاره (خط‌کش غیر مدرج) قابل حل نیست. ولی با حل یک معادله درجهمنتظم محاط در دایره از مسائل سه‌گانه عهد باستان است طی قرن‌ها حل نشده باقی‌مانده بود.

با وجود اثبات امکان ناپذیری حل این مسئله و مسئله‌های مشابه با استفاده از ستاره و پرگار، عده‌ای تلاش می‌کنند این مسائل را حل کنند. در اصطلاح ریاضی‌کاران ایرانی، این عده نوابیغ نامیده می‌شوند

 
ترکیبیات


شمارش و شمردن حالات انجام یک کار از زمانهای دور مورد بررسی بوده‌است. گویا این کار بیش از همه در جنگها برای شمارش سربازان به کار می‌رفته‌است. در این قسمت روشهایی را برای شمردن بدون شمارش دانه به دانه معرفی می‌کنیم.البته باید یاد آوری کنیم که مبحث شمارش همهٔ ترکیبیات را در بر نمی‌گیرد بلکه ترکیبیات یکی از شاخه‌های بسیار وسیع عالم ریاضی است و شمارش بخشی از آن است. ابتدا از دو اصل پر کاربرد شروع می‌کنیم: ۱)اصل ضرب:اصل ضرب می‌گوید که «اگر ما k شی داشته و هر یک را به m شی قسمت کنیم آنگاه mk شی خواهیم داشت».این اصل بسیار بدیهی است.حال ما آن را به صورتی پر کاربرد تر بیان می‌کنیم: «اگر پیشامدی به 2 پیشامد پشت سر هم تقسیم گردد و پیشامد اول به k حالت و پیشامد دوم به m حالت واقع شود آنگاه کل پیشامد به mk حالت واقع می‌شود.» مثال:شخصی قصد سفر از شهر A به شهر B و سپس شهر C را دارد.از شهر A به شهر B,پنج جاده و از B به C چهار راه وجود دارد.اگر از A به C جادهٔ مستقل وجود نداشته باشد به چند طریق می‌توان از A به C رفت؟جواب:واضح است که بنا بر اصل ضرب پاسخ برابر 20 می‌باشد. این ساده‌ترین نوع سوال ترکیبیات است. در اصل شمارش اگر کاری را بتوان به m طریق وکار دیگری را بتوان به nطریق انجام داد واگر این دو کار را نتوان هم‌زمان انجام داد آنگاه این یا آن کار را می‌توان به m+n طریق انجام داد

تضعیف مکعب


تضعیف مکعب از مسائل باستانی ریاضیات است. یونانیان و قبل از آن‌ها هندیان این مسئله را می‌شناختند. صورت مسئله این است:

«فقط با به‌کار بردن ستاره و پرگار، مکعبی بسازید که حجم آن دوبرابر حجم مکعبی داده شده باشد.»

ثابت شده است که این مسئله جوابی ندارد[نیاز به ذکر منبع].

این مسئله به همراه تثلیث زاویه و تربیع دایره از مسائل مورد توجه نوابیغ بوده است

توپولوژی


توپولوژی شاخه‌ای از ریاضیات است که به بررسی فضاهای توپولوژیک می‌پردازد.

تعریف
مجموعه X به همراه گردایه T از زیرمجموعه‌های X را یک فضای توپولوژیکی گویند هر گاه:


مجموعه تهی و X عضو T باشند.
اجتماع هر گردایه از مجموعه‌های عضو T در T قرار دارد.
اشتراک هر دو مجموعه عضو T در T قرار دارد.
مجموعه T را یک توپولوژی روی X می‌گوییم. همچنین اعضای T مجموعه‌های باز در X و متتم آنها مجموعه‌های بسته در X هستند.

اعضای X را نقاط می‌‌نامیم.


ارتباط بین دو فضای توپولوژیک
روی یک مجموعه مانند X توپولوژیهای متعددی می‌توان تعریف کرد (حداقل دو توپولوژی گسسته و ناگسسته را می‌توانیم روی X تعریف کنیم). حال فرض کنید T1 و T2 دو توپولوژی روی X هستند. اگر هر عضو T1، عضوی از T2 نیز باشد آنگاه می‌گوییم T2 ظریفتر از T1 است. در این صورت اثباتی که برای وجود یک مجموعه باز معین ارائه می‌‌دهیم در مورد توپولوژی ظریفتر هم برقرار است.



توابع پیوسته
فرض می‌‌کنیم (X,T)و(Y,U) دو فضای توپولوژیک دلخواه باشند:
تابع f:X − > Y در نقطهٔ x واقع در X را پیوسته گوییم، هرگاه به ازای هر مجموعهٔ باز شامل f(x) مانند YB، مجموعهٔ بازی مانند XB شامل x وجود داشته باشد به طوری که [XB]f زیر مجموعهٔ YB باشد.
به همین ترتیب می‌‌گوییم تابع f:X − > Y در مجموعهٔ A واقع در X پیوسته است رد صورتی که در تمام نقاط A پیوسته باشد.

قضیه : تابع f:X − > Y در X پیوسته است اگر و تنها اگر به ازای هر زیر مجموعه باز در Y مانند YB، مجموعه ی1-[YB]f زیر مجموعهٔ باز X باشد.

به طور خلاصه : فرض کنید X و Y دو فضای توپولوژیکی هستند. یک تابع بین X و Y را پیوسته می‌گوییم اگر تصویر معکوس هر مجموعه باز در X یک مجموعه باز در Y باشد. در واقع نشان می‌‌دهیم که هیچ شکستگی یا انفصال در تابع وجود ندارد.


مثال
R یک فضای توپولوژیکی است و مجموعه‌های باز در آن بازه‌های باز هستند. به طور کلی فضای اقلیدسی Rn یک فضای توپولوژیکی است و مجموعه‌های باز در آن گوی‌های باز هستند.


چند قضیه توپولوژی
هر بازه بسته با طول متناهی در Rn فشرده است. و معکوس
تصویر پیوسته یک فضای فشرده، فشرده است.
قضیه تیخونوف: حاصلضرب فضاهای فشرده، یک فضای فشرده است.
زیر مجموعه فشرده یک فضای هاسدورف، بسته است.
هر فضای متری هاسدورف است

مثلث خیام ، پاسکال


بسیاری عقیده دارند که مثلث حسابی پاسکال را باید مثلث حسابی خیام نامید و برخی پا را از این هم فراتر گذاشته اند و معتقد اند که دو جمله ای نیوتون را باید دوجمله ای خیام نامید . اندکی در این باره دقت کنیم.

همه کسانی که با جبر مقدماتی آشنایی دارند ،"دستور نیوتن" را درباره بسط دوجمله ای میشناسند. این دستور برای چند حالت خاص (وقتی n عددی درست و مثبت باشد) چنین است:


(a+b)0 = 1 (1)
(a+b)1 = a+b (1,1)
(a+b)2 = a2+2ab+b2 (1,2,1)
(a+b)3 = a3+3a2b+3ab2+b3 (1,3,3,1)
(a+b)4 = a4+4a3b2+6a2b2+4a2b3+b4 (1,4,6,4,1)
. . .

اعداد داخل پرانتزها، معرف ضریبهای عددی جمله ها در بسط دوجمله ای است.

بلیز پاسکال (Blaise Pascal) فیلسوف و ریاضی دان فرانسوی که کم وبیش با نیوتون همزمان بود، برای تنظیم ضریبهای بسط دوجمله ای، مثلثی درست کرد که امروز به "مثلث حسابی پاسکال" مشهور است. طرح این مثلث برای نخستین بار در سال 1665 میلادی در "رساله مربوط به مثلث حسابی "چاپ شد.مثلث حسابی چنین است:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

دراین مثلث از سطر سوم به بعد هر عددبرابر با مجموع اعداد بالا و سمت چپ آن در سطر قبل است و بنابراین میتوان آنرا تا هر جا که للازم باشدادامه داد. هرسطر این مثلث ضریبهای بسط دوجمله ای را در یکی از حالتها بدست میدهد بطوری که n همان شماره سطر باشد.

ضریبهای بسط دوجمله ای (برای توانهای درست و مثبت) حتا در سده دوم پیش از میلاد البته به صورت کم و بیش مبهم برای دانشمندان هندی روشن بوده است .باوجود این حق این است که دستور بسط دو جمله ای با نام نیوتن همراه باشد زیرا نیوتن آن را برای حالت کلی و وقتی n عددی کسری یا منفی باشد در سال 1676میلادی بکاربرد.که البته در این صورت به یک رشته بی پایان تبدیل میشود.

اما در باره مثلث حسابی وضریبهای بسط دوجمله ای در حالت طبیعی بودن n. از جمله، دستور بسط دو جمله ای را میتوان در "کتاب حساب مخفی" میخائیل شتیفل جبردان آلمانی (که در سال 1524 چاپ شد) پیدا کرد.

در سال 1948 میلادی،پاول لیوکی آلمانی،مورخ ریاضیات،وجود دستور نیوتن را برای توانهای طبیعی ،دز کتاب "مفتاح الحساب"(1427 میلادی) غیاث الدین جمشید کاشانی کشف کرد. بعدها س.آ.احمدوف ،مورخ ریاضیات و اهل تاشکند، دستور نیوتون وقانون تشکیل ضریبهای بسط دوجمله ای را،در یکی از رساله های نصر الدین توسی،ریاضیدان بزرگ سده سیزدهم میلادی ،کشف کرد (این رساله توسی درباره محاسبه بحث میکند). چه جمشید کاشانی وچه نصرالدین توسی ،این قاعده را ضمن بررسی قانون های مربوط به ریشه گرفتن از عددها آورده اند.

همچنین براساس آگاهی هایی که داریم حکیم عمر خیام رساله ای داشته که خود رساله تاکنون پیدا نشده ولی از نام آن "درستی شیوه های هندی در جذر وکعب "اطلاع داریم ،کهدر آن به تعمیم قانونهای هندی درباره ریشه دوم و سوم ،برای هر ریشه دلخواه پرداخته.لذا خیام از "دستور نیوتن" اطلاع داشته.

اما بنا به اسناد تاریخی معتبر قانونهای مربوط بهضریبهای بسط دوجمله ای وطرح مثلث حسابی تا سده دهم میلادی(برابر چهارم هجری) جلو میرود و به کرجی (ابوبکر محمد بن حسن حاسب کرجی ریاضیدان سده ده و یازده میلادی) پایان میپذیرد .بنابراین حتی" مثلث حسابی پاسکال" را هم از نظر تاریخی نمیتوان "مثلث حسابی خیام " نامید

عدد e


پایه لگاریتم طبیعی (~ 2.71828)، اولین بار توسط لئونارد اولر (Leonhard Euler 1707-83) یکی از باهوشترین ریاضی دانان تاریخ ریاضیات مورد استفاده قرار گرفت. در یکی از دست خطهای اولر که ظاهرا" بین سالهای 1727 و 1728 تهیه شده است با تیتر Meditation on experiments made recently on the firing of cannon اولر از عدی بنام e صحبت می کند. هر چند او رسما" این نماد را در سال 1736 در رساله ای بنام Euler's Mechanica معرفی میکند.


در واقع باید اعتراف کرد که اولر کاشف یا مخترع عدد e نبوده است بلکه سالها قبل فردی بنام جان ناپیر (John Napier 1550-1617) در اسکاتلند هنگامی که روی لگاریتم بررسی می کرده است بحث مربوط به پایه طبیعی لگاریتم را به میان کشیده است. فراموش نکنید که شواهد نشان میدهد حتی در قرن هشتم میلادی هندی ها با محاسبات مربوط به لگاریتم آشنایی داشته اند.

در اینکه چرا عدد ~ 2.71828 بصورت e توسط اولر نمایش داده شده است صحبت های بسیاری است. برخی e را اختصار exponential می دانند، برخی آنرا ابتدای اسم اولر (Euler) می دانند و برخی نیز میگویند چون حروف a,b,c و d در ریاضیات تا آن زمان به کررات استفاده شده بود، اولر از e برای نمایش این عدد استفاده کرد. هر دلیلی داشت به هر حال امروزه اغلب این عدد را با نام Euler می شناسند.

اولر هنگامی که روی برخی مسائل مالی در زمینه بهره مرکب در حال کار بود به عدد e علاقه پیدا کرد. در واقع او دریافت که در مباحث بهره مرکب، حد بهره به سمت عددی متناسب (یا مساوی در شرایط خاص) با عدد e میل میکند. بعنوان مثال اگر شما 1 میلیون تومان با نرخ بهره 100 درصد در سال بصورت مرکب و مداوم سرمایه گذاری کنید در پایان سال به رقمی حدود 2.71828 میلون تومان خواهید رسید.

در واقع در رابطه بهره مرکب داریم :


P = C (1 + r/n) nt

که در آن P مقدار نهایی سرمایه و بهره است، C مقدار اولیه سرمایه گذاری شده،r نرخ بهره، n تعداد دفعاتی است که در سال به سرمایه بهره تعلق می گیرد و t تعداد سالهایی است که سرمایه گذاری می شود.

در این رابطه اگر n به سمت بی نهایت میل کند - حالت بهره مرکب - فرمول را می توان بصورت زیر ساده کرد :


P = C e rt

اولر همچنین برای محاسبه عدد e سری زیر را پیشنهاد داد :


e = 1+ 1/2 + 1/(2 x 3) + 1/(2 x 3 x 4) + 1/(2 x 3 x 4 x 5) + . . .

لازم است ذکر شود که اولر علاقه زیادی به استفاده از نمادهای ریاضی داشت و ریاضیات امروز علاوه بر عدد e در ارتباط با مواردی مانند i در بحث اعداد مختلط، f در بحث توابع و بسیاری دیگر نمادها مدیون بدعت های اولر است

Cos x + i Sin x )n = Cos nx + i Sin nx )


سده هجدهم برای اولین بار شاهد عمومی شدن ریاضیات در بریتانیا بود. روزهای یکشنبه برای فقرا مدرسه هایی تاسیس شد، زیرا تنها در این روزها بود که امکان تخصیص مدارس برای آنها وجود داشت. هرچند این موضوع خشم کلسیاها را برانگیخت اما بتدریج کتابخانه های سیار تاسیس شد و چاپ از انحصار لندن بیرون آمد و امکانات آن در سراسر کشور مهیا شد.


کتابهای درسی مقدماتی منتشر شد و نشریات ریاضی برای عامه بوجود آمدند. دیگر ریاضیات یک دانش اشرافی نبود، حتی آثار کلاسیک از قبیل کتاب اصول نیوتن به زبان انگلیسی منتشر شد و دموکراسی علاوه بر سیاست در سایر زمینه ها از جمله علم نمود پیدا کرد.

نگاهی به فهرست بلند ریاضیدانان انگلیسی در این دوران نشان از اهمیت و نقش انگلستان در پیشبرد ریاضیات در این قرن است. یکی از این ریاضیدانان که کمتر آشنای عموم است آبراهم دو موار (A. De Movier) است که با وجود آنکه اصلا" متولد فرانسه بود اما در نوجوانی به لندن آمد و در آنجا مشغول زندگی شد و باید انصافا" آنرا یک ریاضی دان انگلیسی به حساب آورد.

برای مثال به رباتی هوشمند بیاندیشید که بتواند اعضای بدن خود را به حرکت درآورد، او نسبت به این حرکت خود آگاه بوده و با سعی و خطا، دامنه حرکت خود را گسترش می دهد، و با هر حرکت موفقیت آمیز یا اشتباه ، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی می دود و یا به روشی برای جابجا شدن، دست می یابد، که سازندگانش، برای او، متصور نبوده اند.

هر چند مثال ما در تولید ماشینهای هوشمند، کمی آرمانی است، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان، عموما برای تولید چنین ماشینهایی، از تنها مدلی که در طبیعت وجود دارد، یعنی توانایی یادگیری در موجودات زنده بخصوص انسان، بهره می برند.

آنها بدنبال ساخت ماشینی مقلد هستند، که بتواند با شبیه سازی رفتارهای میلیونها سلول مغز انسان، همچون یک موجود متفکر به اندیشیدن بپردازد.

مباحث هوش مصنوعی قبل از بوجود آمدن علوم الکترونیک، توسط فلاسفه و ریاضی دانانی نظیر بول (Boole) که اقدام به ارائه قوانین و تئوری هایی در باب منطق نمودند، مطرح شده بود. در سال 1943، با اختراع کامپیوترهای الکترونیکی، هوش مصنوعی، دانشمندان را به چالشی بزرگ فراخواند. بنظر می رسید، تکنولوژی در نهایت قادر به شبیه سازی رفتارهای هوشمندانه خواهد بود.

با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با دیده تردید به کارآمدی آن می نگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سیستمهای هوشمند در صنایع گوناگون هستیم.

هوش مصنوعی که همواره هدف نهایی علوم کامپیوتر بوده است، اکنون در خدمت توسعه علوم کامپیوتر نیز می باشد. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن می سازند، پایگاههای داده ای پیشرفته، موتورهای جستجو، و بسیاری نرم افزار ها و ماشینها از نتایج تحقیقات هوش مصنوعی بهره می برند.

قضیه اساسی حساب


قضیه اساسی حساب در نظریه اعداد به این شکل بیان می‌شود:

هر عدد طبیعی بزرگ‌تر از یک را می‌توان به طور یکتا به صورت حاصلضربی از اعداد اول نوشت. به عنوان مثال:

172 * 3 * 23 = 6936

حال اگر ترتیب نوشتن عاملها را در نظر نگیریم این تنها تجزیه از عدد ۶۹۳۶ به عوامل اول است که می‌توانیم بنویسیم.



اثبات
اثبات این قضیه شامل دو قسمت است. ابتدا نشان می‌دهیم هر عدد را می‌توان به صورت حاصلضربی از اعداد اول نوشت و سپس ثابت می‌کنیم این تجزیه یکتاست.

برهان: فرض می‌‌کنیم عدد صحیح مثبتی مانند x وجود دارد که نمی‌توان آن را به حاصلضرب اعداد اول تجزیه کرد. مجموعهٔ A را به این شکل تعریف می‌‌کنیم:
«مجموعه n‌های عضو اعداد طبیعی به طوریکه 1A مخالف تهی است زیرا x عضوی از A است. پس بنا به اصل خوش ترتیبی اعداد طبیعی A عضو ابتدا دارد.

فرض می‌کنیم m ابتدای A باشد (یعنی m عضوی از A است و در نتیجه قابل تجزیه به اعداد اول هم نیست). بنابراین m اول نیست پس عددی مرکب است یعنی:

m = d1 * d2;1 < d1 < m,1 < d2 < m

بدیهی است که d1 و d2 عضو A نیستند زیرا از m کوچک‌ترند لذا هر دو تجزیه‌پذیرند. بنابراین:

d1 = p1 * p2 * ... * pk

d2 = q1 * q2 * ... * qs

به طوری که p‌ها و q‌ها اول هستند. در نتیجه:

m = p1 * p2 * ... * pk * q1 * q2 * ... * qs

می‌بینیم که m تجزیه‌پذیر شده و این با فرض ما در تناقض است

بینهایت


بی نهایت از واژه لاتین "finitus" به معنی "محدود" گرفته شده ( علامت ∞ ) چیزی است که "محدود" نیست، که در آن هیچ محدودیت فضایی و زمانی وجود ندارد.

نگرش باستانی در مورد بی نهایت
نگرش باستانی از ارسطو آغاز شده است :
"تفکر درباره یک عدد بزرگ همیشه ممکن است: چون تعداد دفعاتی که میتوان یک مقدار را به دو نیمه تقسیم کرد، بی نهایت است. بنابراین بی نهایت، امکان بالقوهای است که هرگز بالفعل نمی گردد؛ تعداد اجزایی را که می توان به دست آورد، همیشه از هر عدد معینی بیشتر است."
به این مورد اغلب بی نهایت "بالقوه" اطلاق می شود، بهرحال دو نظریه در این مورد با هم ترکیب شده اند. یکی اینکه همیشه پیدا کردن چیزی هایی که تعداد آنها از هر عددی بیشتر باشد ممکن است، اگرچه آن چیزها عملا وجود نداشته باشند. دیگر اینکه ما می توانیم بدون محدودیتی، اعداد بالاتر از محدود را شمارش کنیم.

مثلا "برای هر عدد صحیح n، یک عدد صحیح m (m > n وجود دارد. دومین نگرش را بصورت واضحتر در آثار نویسندگان قرون وسطایی مثل William of Ockham میتوان یافت :
:"Sed omne continuum est actualiter existens. Igitur quaelibet pars sua est vere existens in rerum natura. Sed partes continui sunt infinitae quia non tot quin plures, igitur partes infinitae sunt actualiter existentes."
( هر زنجیره حقیقتا وجود دارد. بنابراین هر یک از اجزاء آن واقعا در طبیعت وجود دارد. اما اجزاء زنجیره نامحدود هستند چون هیچ عدد بزرگی نیست که عددی بزرگتر از آن نباشد، پس اجزاء نامحدود واقعا وجود دارند.)
اجزاء از بعضی جهات واقعا وجود دارند. بهرحال، در این نگرش، هیچ بزرگی بی نهایتی نمی تواند یک عدد داشته باشد، چون هر عددی را که تصور کنیم، همیشه عددی بزرگتر از آن وجود دارد: "هیچ بزرگی (از لحاظ عددی ) نیست که بزرگتر از آن نباشد. ( Aquinas همچنین بر ضد این نظریه که بینهایت میتواند از هر جهت کامل یا کلی باشد بحث کرده است.
نگر ش های نوین آغازین
گالیله در زمان بازداشت طولانی در خانه اش در Sienna بعد از محکومیتش توسط استنطاق مذهبی اولین کسی بود که متوجه شد می توان مجموعه ای از بی نهایت عدد را بصورت تناظر یک به یک با یکی از زیر مجموعه های حقیقی آن در کنار هم قرارداد.

با این استدلال مشخص می شود، اگرچه طبیعتا یک مجموعه که بخشی از مجموعه دیگر بوده، کوچکتر است(چون تمام اعضاء آن مجموعه را شامل نمی شود) از بعضی جهات هم اندازه اند. او معتقد بود این یکی از مشکلاتی است که وقتی ما میخواهیم "با ذهن محدود خود" یک امر نامحدود را درک کنیم، پیش می آید
ادراک ریاضی
درک ریاضی مدرن از بینهایت در اواخر قرن نوزدهم توسط کارهای Georg Cantor ،
Richard Dedekind , Gottlob Frege و دیگران با استفاده از ایده مجموعه ها، توسعه یافت. برخورد آنها در اصل به قبول ایده ««تناظر یک به یک بعنوان یک استاندارد برای مقایسه سایز مجموعه ها بود، و رد کردن نظر گالیله (که از اقلیدس ناشی شده بود) مبنی بر اینکه کل نمیتواند هم اندازه جزء باشد. یک مجموعه نامحدود را میتوان بصورت ساده طوری تعریف نمود که هم اندازه حداقل یکی از اجزاء "مناسب" آن باشد.
دینسان کانتور نشان داد که مجموعه های بینهایت میتوانند اندازه های متفاوت داشته باشند، با تمایز بین مجموعه های بینهایت قابل شمارش و بینهایت غیر قابل شمارش، و یک فرضیه اعداد کاردینال را حول این مطلب توسعه داد. نظر او غالب گردید و ریاضیات مدرن عملا بینهایت را پذیرفت. سیستمهای اعداد توسعه یافته مشخصی، مانند اعداد حقیقی، اعداد معمولی(محدود) و اعداد نامحدود را با سایزهای مختلف، متحد می نمایند.


وقتی سروکارمان با مجموعه های نامحدود می افتد، بصیرت کسب شده ما از مجموعه های محدود ازکار میافتد. یک مثال برای این پارادوکس گراند هتل هیلبرت است.


یک سوال فریبکارانه این است که آیا بینهایت عملی در کیهان مادی وجود دارد: آیا تعداد ستاره ها نامحدود است؟ آیا کیهان دارای حجم نامحدود است؟ آیا فضا "تا ابد ادامه" دارد؟ این یک سوال باز مهم در کیهان شناسی است. توجه داشته باشید که سوال از نامحدود بودن بصورت منطقی، غیر از سوال در مورد داشتن مرز می باشد. سطح دو بعدی زمین، برای مثال، محدود است، در حالیکه هیج مرزی ندارد. با راه رفتن / دریانوردی / رانندگی به اندازه کافی طولانی در مسیر مستقیم، شما درست به همان نقطهای که شروع کرده بودید، باز می گردید. کیهان، حداقل در مبادی و اصول، ممکن است بر اساس یک اصل مشابه عمل نماید؛ اگر شما با فضاپیمای خود به اندازه کافی طولانی در مسیر مستقیم و روبروی خود پرواز کنید، شما اتفاقا و بصورت ناگهانی دوباره از همان نقطه ایی که از آن شروع کرده بودید، می گذرید.

نظریات مدرن

مباحث مدرن درباره بینهایت، امروزه بصورت بخشی از تئوری مجموعه و ریاضیات مورد توجه قرار گرفته است، و کلا فلاسفه از بحث درباره آن احتراز می کنند. Wittgenstein یک استثناء بوده است، کسی که حملات مهیجی را علیه بدیهیات تئوری مجموعه، و ایده بینهایت عملی، در "اواسط عمر خود" انجام داد.
بینهایت امروزه به انواع مجموعه های نامحدود زیادی تقسیم شده است، مانند aleph-null ، یک سری قابل شمارش از اعداد طبیعی، و beth-one ، یک سری غیر قابل شمارش مانند تعداد کمانهای موجود در یک دایره یا تعداد نقاط روی یک خط، و یک تعداد نامحدود از چیزهای دیگر.
آیا معادله m = 2n گروه تمام اعداد را با زیرگروههایش مرتبط می کند؟ خیر. آن هر عدد دلخواهی را با دیگری مرتبط می سازد، و بدین ترتیب ما به گروههای زوج نامحدود وارد می شویم، که هرکدام به دیگری مرتبط میباشد، ولی هرگز به گروه یا زیرگروهی مرتبط نیستند. هیچیک از این دو، یکجوری خودش یا دیگر گونه از یک زوج گروه،فرآیند نامحدود نمی باشند ... در موهومات که m = 2n یک گروه را به زیر گروه هایش مرتبط میسازد، هنوز ما صرفا یک حالت از دستور زبان دوپهلو را خواهیم داشت.
مطلق

سوال دیگر این است که آیا ادراک ریاضی از بینهایت ارتباطی با ادراک مذهبی از خدا دارد؟ این سوال هم کانتور را، با عقیده اش در مورد بینهایت مطلق که با خدا برابر قرارداده شده است، و هم Kurt Godel را با اثبات Godel's ontological??? اش از وجود یک نهاد که او آنرا به خدا وابسته کرد، مخاطب خود قرار داده است

قضیه ی 4 رنگ


قضیه چهار رنگ به صورت ساده این است: یک نقشه داریم. ثابت کنید می توان کشورها را با 4 رنگ، رنگ کرد به صورتی که هر دو کشور مجاور ناهمرنگ باشند. این مسله برخلاف ظاهر ساده اش سال ها فکر دانشمندان را به خود مشغول داشت تا در حدود 1976 چند دانشمند بعد از این که 25 سال از عمرشان را وقف اثبات این نظریه کردند، توانستند ثابت کنند که اگر برای حدود 10000 نقشه (گراف) ای که لیست شده بودند این کار امکان پذیر باشد آنگاه برای همه ی نقشه ها این کار ممکن است. این تعداد نقشه با کمک کامپیوتر و برنامه ای که آن ها نوشته بودند ، طی روزها تلاش کامپیوتر حل شد. آن ها در واقع در ابتدا قصد استفاده از کامپیوتر را نداشتند ولی ناچار به این کار شدند. بعد کسانی پیدا شدند و گفتند این که نشد اثبات و این دو نفر کلی تلاش کردند که آن ها را قانع کنند که این هم اثبات است و از اثبات 1000 صفحه ای یک قضیه بدتر نیست. ولی هنوز هم دانشمندان در حسرت یک اثبات ساده برای این قضیه هستند. اثباتی که روی کاغذ باشد!
نکته ی دیگر این که این مسله با کمک نظریه گراف حل شد

 

+ نوشته شده در  جمعه یازدهم بهمن 1387ساعت   توسط حسن خمیر گیر بهروز |